Техническое описание TI 257F/00/ru

Инструкции по эксплуатации 016842-1000

Гидростатические измерения уровня deltapilot S DB 50, DB 51, DB 52 deltapilot S DB 50 L deltapilot S DB 53

Датчики давления с измерительной ячейкой CONTITE: водонепроницаемые, атмосферостойкие, с долговременной стабильностью

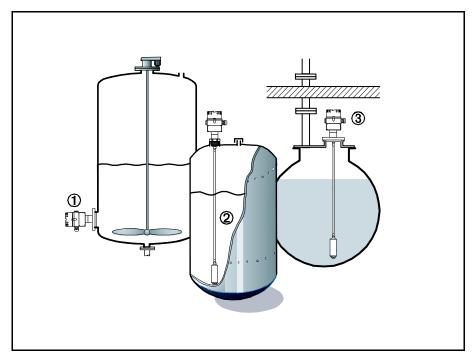
Для пищевых продуктов, свежей и сточной воды, химических и фармацевтических препаратов

Область применения

Приборы семейства Deltapilot S предназначены для непрерывных измерений уровня жидкостей и пастообразных веществ в химической, фармацевтической и пищевой промышленности, а также в областях водоподготовки и очистки сточных вод. Вместе с соответствующими преобразователями они могут использоваться для:

- определения уровня, объема, перепада давлений, массы и плотности продукции,
- контроля предельных контактов,
- интеграции точек измерений в различных автоматизированных системах.

Особенности и преимущества


- Новая измерительная ячейка "CONTITE":
 - водонепроницаемая, с долговременной стабильностью,
 - с высокой степенью линейности (менее 0,1% диапазона измерений),
 - с низким коэффициентом температурной зависимости (менее 0,1%/10 K).
- Зонды в компактном, стержневом или тросовом исполнении.
- Отдельный монтаж корпуса и электронного блока (по классу защиты IP 68 в пункте измерений).
- Простота и удобство управления с помощью электронных блоков Smart:
 - с дисплеем FHB 20 для установки непосредственно на объекте,
 - с использованием интеллектуальных протоколов передачи данных (INTENSOR: HART), либо
 - с помощью интерфейсной платы для подключения к ПК по шине Rackbus или к шине PROFIBUS-PA.

Варианты исполнения

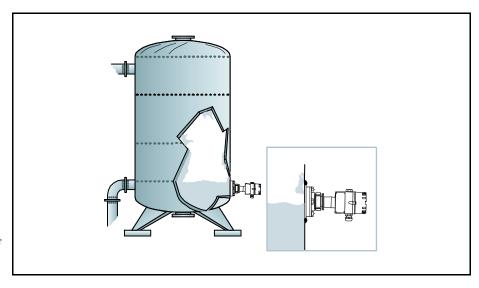
Для жидкостей, которые закачивались насосом:

- DB 50: компактное исполнение,
- DB 51: стержневое исполнение (с удлинительной трубой),
- DB 52: тросовое исполнение (с удлинительным тросом)
 - Deltapilot S DB 50:
 компактное исполнение
 Deltapilot S DB 51
 стержневое исполнение
 Deltapilot S DB 52
 тросовое исполнение

Модульные зонды, идеально подходящие для различных условий эксплуатации

- Компактное исполнение:
 - монтаж на стенке или у днища резервуара
- Стержневое или тросовое исполнение:
 - монтаж сверху, обеспечивающий простоту установки и модернизации оборудования подземных резервуаров
 - не требуются дополнительные отверстия в днище резервуара
- Переходник для корпуса:
 - на случай большой вероятности залива продукцией: допускает раздельный монтаж корпуса и электронного блока, позволяет дистанционно управлять работой измерительного пункта,
 - класс защиты IP 68 в пункте измерений.

Оптимальное соответствие условиям техпроцесса

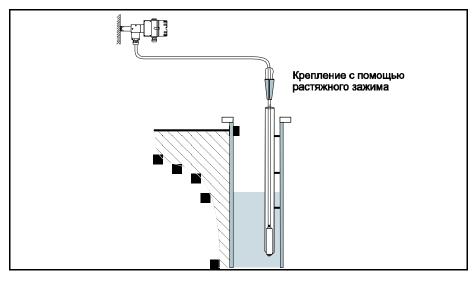

- Мембрана из сплава Хастеллой обеспечивает высокую прочность и химическую стойкость.
- Высокий предел прочности мембраны при сжатии/разрежении
 - возможны давления в 20 раз выше номинального (максимум – 25 бар, т.е. 380 фунтов/кв. дюйм), а также разрежения до –900 мбар (–13 фунтов/кв. дюйм).
- Универсальная взрывозащита.

Высокая точность

- Высокая прочность измерительной ячейки на сжатие: возможны давления в 20 раз выше номинального (максимум – 25 бар, т.е. 380 фунтов/кв. дюйм), а также разрежения до –900 мбар (–13 фунтов/кв. дюйм).
- Низкий коэффициент температурной зависимости (менее 0,1%/10 K).

DB 50 L для пищевой и фармацевтической промышленности

Deltapilot S DB 50 L с приварным фланцем для монтажа заподлицо. Все соединительные штуцеры для пищевой промышленности не имеют зазоров, так что возможна их полная очистка от остатков продуктов.



Соединительные штуцеры для приложений, в которых требуется соответствие санитарным нормам

- Предлагаются все типовые соединительные штуцеры для монтажа заподлицо.
- Асептические соединительные штуцеры с возможностью очистки без остатка продуктов (CIP).
- В комплекте стандартной поставки измерительная ячейка с мембраной из сплава Hastelloy, не содержащая эластомеров и имеющая сварное уплотнение.

- Переходник для корпуса:
 - на случай большой вероятности залива продукцией: допускает раздельный монтаж корпуса и электронного блока, позволяет дистанционно управлять работой измерительного пункта,
 - класс защиты IP 68 в пункте измерений.
- Аттестация по ЗА или EHEDG
- Уплотнение мембраны по USDA/H1 в соответствии с директивами Управления по санитарному надзору FDA

DB 53 для приложений водоподготовки и очистки сточных вод

Крепление Deltapilot S DB 53 с помощью растяжного зажима

Прочный и надежный, идеальный для водоподготовки и очистки сточных вод

- Электронные блоки со встроенной защитой от перенапряжений при ударах молний.
- Трубка измерительной ячейки из нержавеющей стали и мембрана из сплава Хастеллой для защиты от воздействий агрессивных сред.
- Кабели датчика длиной до 200 м (8000 дюймов) для обычных или до 100 м (4000 дюймов) для опасных зон не требуют разгрузки от натяжения.
- Специальная измерительная ячейка (с покрытием из родия) для приложений, в которых возможно интенсивное образование водорода (напр., при брожении). Не используйте оцинкованные фитинги в таких ситуациях!

Измерительная система

Принципы измерений

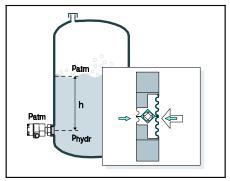
Под действием массы столба жидкости создается гидростатическое давление. При постоянной плотности оно зависит только от высоты столба жидкости *h*:

 $P_{eudpocmamuyeckoe} = \rho \cdot g \cdot h$

 $\rho = плотность.$

g =ускорение свободного падения,

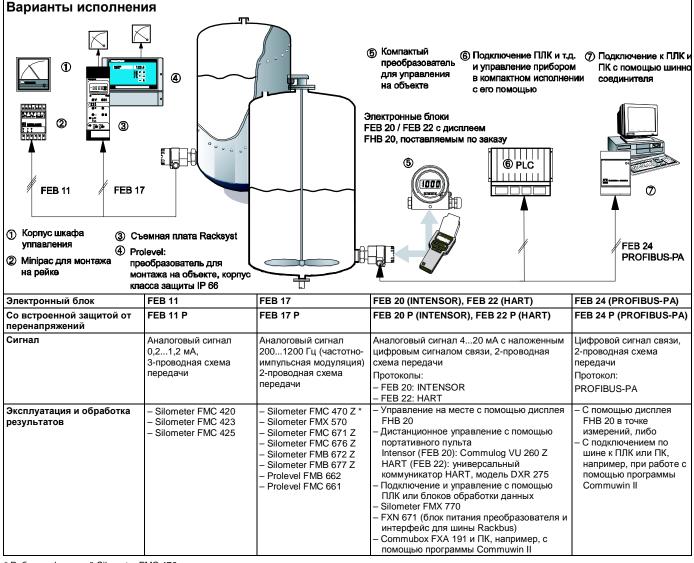
h = расстояние между уровнем поверхности жидкости и центром технологической мембраны


Измерительная ячейка

Главный элемент Deltapilot S — новая атмосферостойкая и водонепроницаемая измерительная ячейка "CONTITE" с долговременной стабильностью. С помощью специальной подложки она защищена от гидравлических ударов величиной в 20 раз выше номинального давления (максимум — 25 бар, т.е. 380 фунтов/кв. дюйм), что гарантирует точность измерений в любых условиях.

Измерительный пункт

В точке измерений устанавливаются:


- Датчик Deltapilot S с электронным блоком FEB
- Автономный преобразователь, либо интерфейс для подключения к шине данных (Rackbus или PROFIBUS-PA)

Компенсация давления:

Герметичная измерительная ячейка "CONTITE" предназначена для измерения избыточного давления. Атмосферное давление компенсируется в капиллярной трубке, соединяющей фильтр Goretex в корпусе непосредственно с измерительным элементом.

При использовании электронной вставки FEB 20 или FEB 22 датчик Deltapilot S становится компактным прибором, с которым можно работать на месте установки, либо на расстоянии с помощью портативного пульта.

^{*} Работа с функцией Silometer FMC 470 для регистрации длительности импульсов отключения.

Эксплуатация

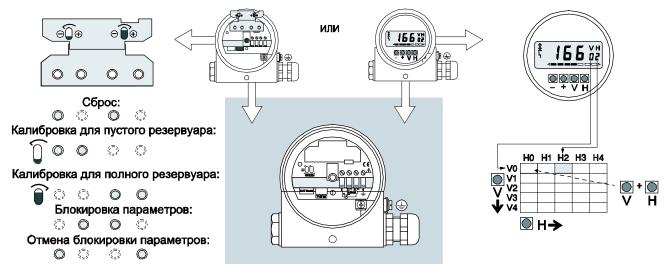
FEB 20 (INTENSOR) / FEB 22 (HART)

При использовании электронного блока Smart (FEB 20/ FEB 22), который монтируется непосредственно в корпусе зонда, Deltapilot S становится компактным преобразователем и позволяет выполнять:

- простые функции калибровки пустого и полного резервуара с помощью клавиш, непосредственно в месте установки, или
- доступ к пользовательской матрице Е+Н
 - с помощью модуля управления FHB 20
- с помощью портативного пульта
- с помощью Silometer FMX 770 или интерфейсной платы FXN 671 для шины Rackbus, либо с помощью модуля Commubox FXA 191 и ПК (например, при использовании программы Commuwin II или ПЛК, станции управления и т.д.).

FEB 24 (PROFIBUS-PA)

Электронный блок FEB с поддержкой протокола PROFIBUS-PA позволяет:


 осуществлять эксплуатацию на объекте с помощью модуля управления FHB 20

или

 работать с матрицей на ПК под управлением ОС Windows с помощью программы Commuwin II.

Работа с матрицей

Стандартная матрица Endress+Hauser — это доступная и единообразная система, с которой легко работать независимо от того, какие средства используются для калибровки Deltapilot S: клавиши и дисплей, портативный пульт, преобразователь Silometer или программа Commuwin II.

Электронный блок FEB 20 / FEB 22 В FHB 20 используется рабочая матрица

Четыре клавиши для вызова основных функций

Управление с помощью клавиш

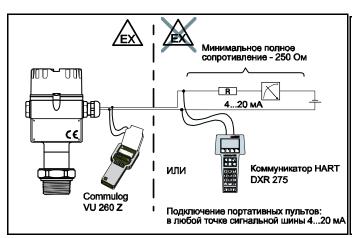
С помощью четырех клавиш пульта местного управления можно вызывать следующие основные функции:

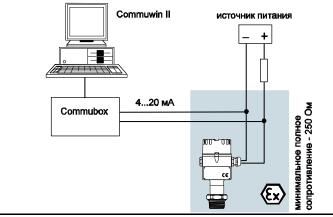
- калибровка для пустого и полного резервуара,
- калибровка для частично заполненной емкости,
- блокировка параметров во избежание изменения параметров матрицы.

Работа с дисплеем FHB 20

После установки дисплея можно получить непосредственный доступ к рабочей матрице Endress+Hauser. Доступны следующие функции:

- «сухая» калибровка,
- линеаризация,
- задание установок для аналогового выхода и эмуляция его работы,
- выбор единиц измерения и т.д.


Портативный пульт

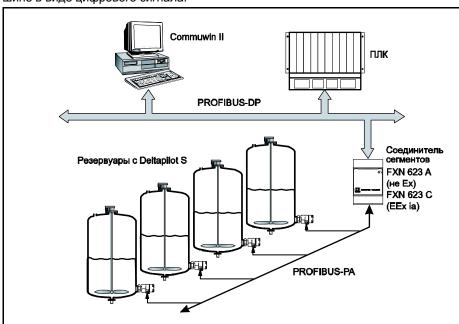

Подключив портативный пульт в любой точке линии передачи сигнала 4...20 мА, для подключения искробезопасных можно получить доступ ко всем функциям Deltapilot S. Выпускаются пульты двух типов:

- Commulog VU 260 Z: для протокола INTENSOR.
- Универсальный коммуникатор HART DXR 275: для протокола HART.

Работа с помощью Commubox

Модуль Commubox FXA 191 служит преобразователей Smart по протоколу INTENSOR или HART к последовательному порту RS 232 C персонального компьютера. Это дает возможность дистанционного управления с помощью программы Commuwin II.

Подключение портативных


Подключение Commubox

PROFIBUS-PA

PROFIBUS-PA - открытый стандарт Fieldbus для подключения датчиков и приводов (которые могут находиться во взрывоопасных зонах) к общей магистральной шине. Питание 2проводных датчиков осуществляется по шине PROFIBUS-PA, а технологические данные от датчиков передаются по этой шине в виде цифрового сигнала.

Число приборов, которыми можно управлять на одном сегменте шины:

- до 10 для приложений класса ЕЕх іа
- до 32 для приложений в неопасных зонах

Электронный блок FEB 24 с поддержкой протокола PROFIBUS-PA позволяет:

- осуществлять эксплуатацию на объекте с помощью модуля управления FHB 20
- работать с матрицей на ПК под управлением ОС Windows 3.11 с помощью программы Commuwin II

Монтаж

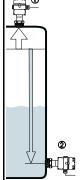
Место монтажа

Компактное исполнение DB 50 (L)

- DB 50 всегда должен монтироваться ниже самой нижней точки измерения.
- Не допускается установка в заполняющем емкость потоке, в выходном патрубке или в месте резервуара, где возможны импульсы давления, обусловленные работой мешалки.
- Калибровка и функциональная проверка выполняются проще, если DB 50 установлен за запорным вентилем.

Стержневое и тросовое исполнения

- Зонд тросового исполнения следует устанавливать в зоне отсутствия потоков и турбулентности, так как поперечные смещения и удары о стенку резервуара могут привести к потере точности измерений. Для этого зонд может быт установлен в успокоительном бассейне (лучше всего из пластмассы) или закреплен на растяжном зажиме.
- Длина несущего кабеля или стержня зонда зависит от нулевой точки уровня. Наконечник зонда должен быть как минимум на 5 см (0,2 дюйма) ниже этой точки.
- При установке в колодце сухопарника зонд монтируют на патрубке для предотвращения проникновения в корпус влаги или конденсата. В условиях очень высокой влажности рекомендуется использовать переходник с целью удаления корпуса и электронного блока от точки измерения.


Измерения в герметично закрытых резервуарах под давлением (измерения разности давлений с помощью электронных устройств)

Разность давлений в герметично закрытых Примечания: резервуарах измеряется с помощью преобразователей Commutec или Prolevel и двух зондов Deltapilot S. Зонд 1 используется для измерения давления напора, а зонд 2 - для измерения полного давления (суммы гидростатического давления и давления напора).

- Не допускается затопление измерительной мембраны зонда 1, так как после этого она будет регистрировать дополнительное гидростатическое давление, что приведет к ошибочным результатам.
- Отношение гидростатического давления к давлению напора не должно превышать 1:6.
- Двух зондов Deltapilot S используйте только измерительные ячейки, которые пригодны для данного приложения (см. пример ниже).

Пример:

Для измерений в герметично закрытых резервуарах с максимальной высотой 5 м (200 дюймов) и максимальным давлением напора 1000 мбар (14.5 фунтов на кв. дюйм) следует выбирать наиболее подходящие измерительные ячейки.

Пример: резервуар с водой

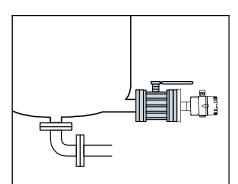
Данные:

Максимальный напор: 1000 мбар (15 фунтов/кв. дюйм)

Максимальное гидростатическое давление (при высоте заполнения водой 5 м (200 дюймов)): 500 мбар (7,3 фунтов/кв. дюйм)

Максимальное давление у зонда 1: 1000 мбар (14,5 фунтов/кв. дюйм)

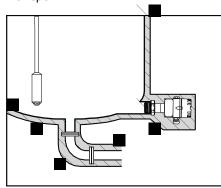
⇒ выбирается измерительная ячейка на 0 ... 1200 мбар (0 ... 15 фунтов/кв. дюйм)


Максимальное полное давление у зонда 2: 500 мбар + 1000 мбар = 1500 мбар (21,8

фунтов/кв. дюйм)

⇒ выбирается измерительная ячейка на 0 ... 4000 мбар (0 ... 60 фунтов/кв. дюйм)

Технологическая мембрана


- Не допускается надавливание на технологическую мембрану или ее чистка с использованием острых или твердых предметов. Образование отложений не влияет на процесс измерений до тех пор, пока эти отложения остаются упругими и могут передавать гидростатическое давление.
- Во всех зондах Deltapilot S с удлинительной трубой или тросом технологическая мембрана защищена от механических повреждений пластмассовым колпачком.

Удобство монтажа и эксплуатации при установке за запорным вентилем.

Влияние температуры

- В случае измерений для продукции, которая может затвердевать при охлаждении, для зонда Deltapilot S должна быть также предусмотрена термоизоляция. В качестве альтернативы возможно использование зондов в стержневом или тросовом исполнениях.
- Если температуры при калибровке и эксплуатации очень сильно отличаются, необходимо прогреть прибор в течение примерно 10–15 минут до того, как с его помощью станут возможными точные измерения.

В случае продукции, затвердевающей при охлаждении. Deltapilot S должен быть изолирован.

Не монтируйте прибор на выходном патрубке резервуара или вблизи мешалок.

Монтаж Deltapilot S

• Уплотнение

К зондам Deltapilot S с соединительным штуцером под резьбу G 1 ¹/₂ прилагается плоское уплотнение. При ввинчивании прибора в резервуар только это уплотнение должно быть установлено на уплотнительной поверхности соединительного штуцера. Не допускается уплотнение при помощи пеньки и аналогичных материалов.

- Для зондов Deltapilot S с соединительным штуцером под резьбу NPT рекомендуется уплотнение резьбы с помощью тефлоновой ленты.
- При затягивании резьбового соединения вращайте зонд за шестигранник, а не за корпус! Не следует затягивать слишком сильно. Момент затяжки не должен быть больше 20–30 Н•м.

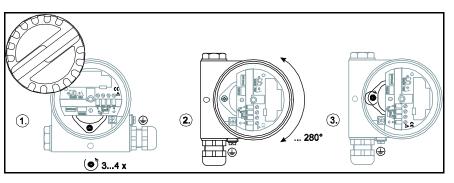
Поворот корпуса

Для правильной ориентации кабельного ввода корпус можно поворачивать. Во избежание проникновения влаги через кабельное уплотнение рекомендуется соблюдать следующие меры, особенно при монтаже зонда вне помещений:

- При установке Deltapilot S сбоку резервуара кабельный ввод всегда должен быть направлен вниз.
- При установке Deltapilot S с защитным колпаком кабельный ввод всегда дожжен располагаться горизонтально.

Поворот корпуса F 6/F 8/F 10

1


- Отвинтите крышку
- Ослабьте на 3-4 оборота винт с крестообразным шлицем, находящийся под корпусом

2

• Разверните корпус (максимум на 280°)

3

• Затяните винт с крестообразным шлицем

Уплотнение корпуса зонда

Важно, чтобы при установке зонда. подключении электронного блока и во время эксплуатации прибора в его корпус не проникала влага. Поэтому крышка корпуса и кабельный ввод должны быть всегда надежно затянуты. При поставке уллотнительное кольцо и резьба алюминиевой крышки покрываются смазкой. Если эта смазка была удалена, для герметизации крышки ее следует нанести заново (используя, например, с силиконовую смазку или графитовую пасту). Не допускается использование смазок на минеральной основе! Это приведет к разрушению уплотнительного кольца.

Компенсация давления

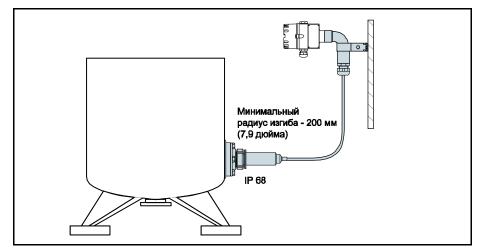
Фильтр Goretex, находящийся за паспортной табличкой прибора, служит для компенсации давления в корпусе датчика. Во время сборки в корпусе зонда создается избыточное давление, которое постепенно сбрасывается через фильтр Goretex. Поэтому после завинчивания крышки корпуса следует выдержать интервал около 1 минуты до начала измерений.

Переходник для корпуса

При помощи переходника корпус зонда с электронным блоком может быть установлен на удалении от зоны измерения. Это позволяет выполнять бесперебойные измерения:

- в крайне сложных ситуациях (очень высокая влажность окружающей среды или опасность залива),
- в труднодоступных или недоступных местах установки.

Быстрое и удобное обслуживание и контроль приборов компактного исполнения с модулем индикации и управления возможны и в отдалении от зоны измерений. При этом защита от несанкционированного доступа к устройствам в зоне измерений реализована по классу IP 68.


Размеры

1 дюйм = 25,4 мм 1 мм = 0,039 дюйма

Использование переходника для корпуса в суровых условиях измерений:

- высокая влажность,
- отсутствие доступа к месту установки.

Место установки защищено по классу IP 68.

Корпуса

Варианты исполнения корпусов

- Пластмассовый корпус тип F 10
- Алюминиевый корпус аналогичной конструкции – тип F 6
- Корпус из нержавеющей стали (1.4301 /AISI 304) – тип F 8

Приборы с электронным блоком и модулем управления (FHB 20) могут поставляться с прозрачной крышкой (см. раздел о дополнительных принадлежностях). Все корпуса имеют класс защиты от проникновения IP 66.

Габаритные размеры Deltapilot S DB 50

Deltapilot S DB 50

Габариты с корпусами типов F 6/F 10

Слева:

Соединительный штуцер с резьбой $G\ 1^{1}/_{2}$ (BSP) или $1^{1}/_{2}\ NPT$

В центре:

Фланцевый соединительный штуцер

(по поводу размеров см. таблицу фланцев ниже)

Справа:

Deltapilot S с барьером защиты от пламени для всех исполнений, используемых во

взрывоопасных зонах класса 0

Deltapilot S DB 50

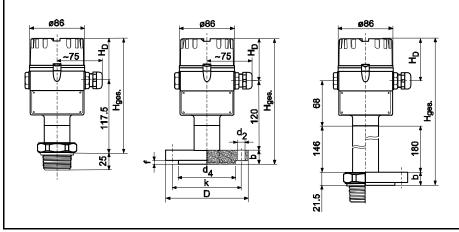
Габариты с корпусами типа F 8

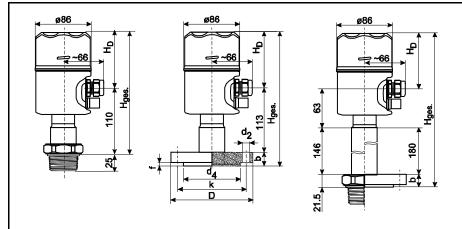
Слева:

Соединительный штуцер с резьбой G $1^{1}/_{2}$ (BSP) или $1^{1}/_{2}$ NPT

В центре:

Фланцевый соединительный штуцер (по поводу размеров см. таблицу фланцев ниже)


Справа:


Deltapilot S с барьером защиты от пламени для всех исполнений, используемых во взрывоопасных зонах класса 0

Размеры

- 1 дюйм = 25,4 мм
- 1 мм = 0,039 дюйма

Конструкция: компактное исполнение для монтажа снизу или сбоку

		Корпус F 6 (алюминий)	Корпус F 10 (пластмасса)	Корпус F 8 (нерж. сталь)
высота H _D	плоская крышка	65	67,5	67
	прозрачная крышка	75	86	80
полная высота H _{ges}				
соединительный	резьба	117,5+H _D	117,5+ H _D	110+H _D
штуцер	фланец	b+120+ H _D	b+120+ H _D	113+ H _D
с барьером защиты от	резьба	235,5+ H _D	235,5+H _D	230,5+H _D
пламени	фланец	b+248+ H _D	b+248+H _D	b+243+H _D

Фланцы Размеры по DIN 2526, форма С. мате

Размеры по DIN 2526, форма C, материал: нержавеющая сталь 1.4435 (AISI 316L)

· · · · · · · · · · · · · · · · · · ·							
Размер	Фланец		Выступ		Число		
	D	b	k	d ₄	f	отверстий	d_2
DN 40 PN 16	150	16	110	88	3	4	18
DN 50 PN 16	165	18	125	102	3	4	18
DN 80 PN 16	200	20	160	138	3	8	18
DN 100 PN 16	220	20	180	158	3	8	18

Размеры по ANSI B16.5, материал: нержавеющая сталь 1.4435 (AISI 316L)

Размер	Фланец			Выступ		Число	
	D	b	k	d_4	f	отверстий	d_2
ANSI 1 ⁴ / ₂ "	127	17,5	98,6	73,2	1,6	4	15,7
ANSI 2"	152,4	19,1	120,7	91,9	1,6	4	19,1
ANSI 3"	190,5	23,9	152,4	127	1,6	4	19,1
ANSI 4"	228,6	23,9	190,5	157,2	1,6	8	19,1

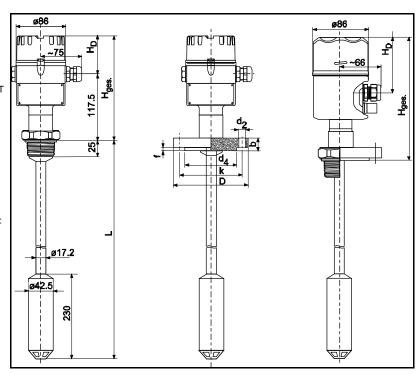
Deltapilot S DB 51

Конструкция: исполнение с удлинительной трубой, для монтажа сверху

Обратите внимание на высоту установки!

Слева: Deltapilot S DB 51 с корпусом типа F 6/F 10

Соединительный штуцер: резьбовой, резьба G $1^{1}/_{2}$ (BSP) или $1^{1}/_{2}$ NPT


В центре: Deltapilot S DB 51 с корпусом типа F 6/F 10

Соединительный штуцер: фланцевый (см. таблицу на стр. 10 по поводу размеров фланцев)

Справа: Deltapilot S DB 51 с корпусом типа F 8

- Материал удлинительной трубы: нержавеющая сталь 1.4435 (AISI 316 L) или 2.4610 (Hastelloy C4)
- Материал трубки измерительной ячейки: нержавеющая сталь 1.4435 (AISI 316 L) или 2.4610 (Hastelloy C4)
- Максимальная длина трубы: 4 м (13,1 фута)

Размеры с барьером защиты от пламени те же, что и для DB 50 (см. стр. 10)

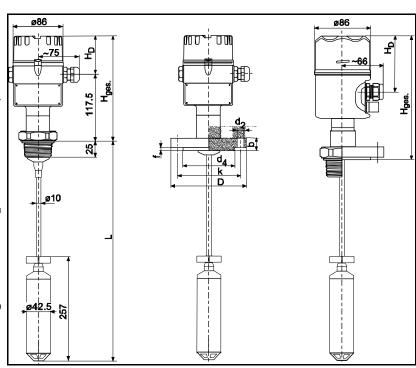
Deltapilot S DB 52

Конструкция: исполнение с удлинительным тросом, для монтажа сверху

Слева: Deltapilot S DB 52 с корпусом типа F 6/F 10

Соединительный штуцер:

резьбовой, резьба G $1^{1}/_{2}$ (BSP) или $1^{1}/_{2}$ NPT


В центре: Deltapilot S DB 52 с корпусом типа F 6/F 10

Соединительный штуцер: фланцевый (см. таблицу на стр. 10 по поводу размеров фланцев)

Справа: Deltapilot S DB 52 с корпусом типа F 8

- Материал несущего кабеля: перфторэтиленпропилен или полиэтилен
- Материал трубки измерительной ячейки: нержавеющая сталь 1.4435 (AISI 316 L) или 2.4610 (Hastelloy C4)
- Максимальная длина кабеля: 200 м (656 футов)
- Максимальная длина кабеля в опасных зонах: 100 м (328 футов)
- Минимальный радиус изгиба: 200 мм (7,9 дюйма)

Размеры с барьером защиты от пламени те же, что и для DB 50 (см. стр. 10)

Размеры

- 1 дюйм = 25,4 мм
- 1 мм = 0,039 дюйма

Внимание! При использовании переходника для корпуса максимальная длина кабеля равна сумме длины несущего кабеля и длины соединительного кабеля переходника для корпуса.

Габаритные размеры Deltapilot S DB 50 L

Универсальный монтажный переходник

Deltapilot S DB 50 L поставляется также с универсальным переходником, позволяющим использовать различные соединительные штуцеры, и с профильным уплотнением из силиконового каучука, которое устанавливается на наконечник зонда. Это уплотнение всегда должно использоваться при ввинчивании в соединительный штуцер.

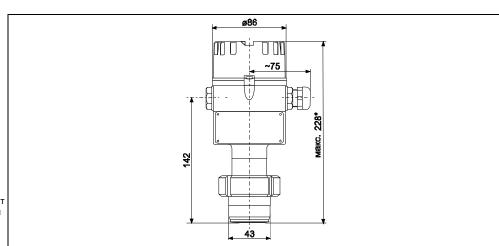
Deltapilot S DB 50 L с универсальным монтажным переходником можно ввинчивать:

- в имеющиеся соединительные штуцеры, либо
- в следующие приварные шейки Endress+Hauser:
 - Диаметр отверстия: 89 мм (3,504 дюйма)
 Материал: 1.4435 (AISI 316L)
 Номер заказа: 942521-0101
 - Диаметр отверстия: 89 мм (3,504 дюйма)
 Материал: 1.4571 (AISI 316Ti)
 Номер заказа: 942521-0102
 - Диаметр отверстия: 65 мм (2,559 дюйма)
 Материал: 1,4435 (AISI 316L)

Материал: 1.4435 (AISI 316L) Номер заказа: 214880-0002

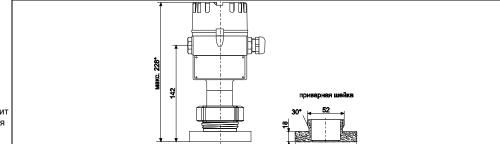
 Диаметр отверстия: 85 мм (3,349 дюйма) поставляется по заказу

Компанией Endress+Hauser предлагается датчик DB 50L с 6дюймовым переходником для резервуаров с двойными стенками.


При сварке приварной шейки в резервуаре рекомендуется использовать болванку (см. пункт Дополнительные принадлежности на стр. 16).

Высота корпуса зависит от варианта исполнения крышки:

полная высота	корпус F 8	корпус F 10	корпус F 8
плоская крышка	207	210	202
прозрачная крышка	217	228	214

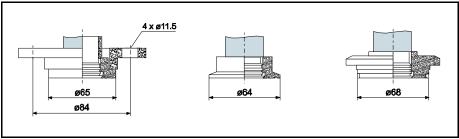

Размеры

1 дюйм = 25,4 мм 1 мм = 0,039 дюйма

Универсальный монтажный переходник

* высота корпуса зависит от варианта исполнения крышки (см. таблицу выше)

Диаметр приварной шейки: 89 мм


* высота корпуса зависит от варианта исполнения крышки (см. таблицу выше)

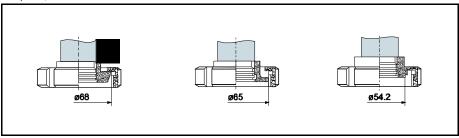
Соединительные штуцеры

Для приложений в пищевой промышленности предусмотрены все типовые соединительные штуцеры, монтируемые заподлицо. В стандартном исполнении они не содержат эластомеров и поставляются со сварным уплотнением для измерительной ячейки. Штуцеры не имеют зазоров, что гарантирует отсутствие остаточных веществ при их очистке на производстве.

Размеры

1 дюйм = 25,4 мм 1 мм = 0,039 дюйма

Фланец диаметром 65 мм (DRD)


- Материал: 1.4435 (AISI 316L)
- Крепление: соединительный фланец 1.4301 (AISI 304) для соединения с приварным фланцем

Муфта Tri-Clamp 2" (ISO 2852)

- Материал: 1.4435 (AISI 316L)
- Крепление: зажим

Резьбовой штуцер DN 50 (Varivent)

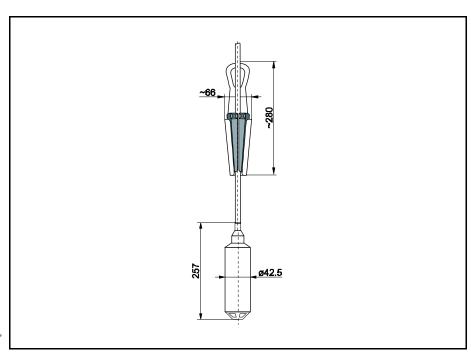
- Материал: 1.4435 (AISI 316L)
- Крепление: зажим

Резьбовой штуцер для молокопроводов: DN 40, DN 50 DIN 11851

- Материал: 1.4435 (AISI 316L)
- Крепление: накидная гайка 1.4301 (AISI 304)

Резьбовой штуцер SMS 2"

- Материал: 1.4435 (AISI 316L)
- Крепление: накидная гайка 1.4301 (AISI 304)


Резьбовой штуцер IDF (ISO 2853)

- Материал: 1.4435 (AISI 316L)
- Крепление: накидная гайка 1.4301 (AISI 304)

Габаритные размеры Deltapilot S DB 53

Во избежание залива продукцией корпус с электронным блоком монтируется вне смотровых колодцев и емкостей. Крепежный зажим DB 53 аналогичен переходнику для корпуса, используемому для раздельного монтажа корпусов и электронных блоков DB 50, DB 50 L, DB 51, DB 52 (см. стр. 15). Кабель датчика растягивается с помощью растяжного зажима, который, кроме того, обеспечивает разгрузку от натяжения.

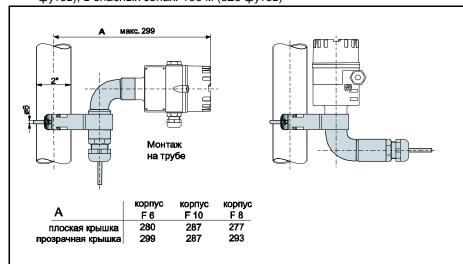
- Материал: оцинкованная сталь с пластмассовыми зажимными губками
- Номер заказа: 010527-0000
- Кабель датчика:
 - минимальный радиус изгиба: 200 мм (7,9 дюйма)
 - максимальная длина кабеля: 200 м (656 футов)
 - максимальная длина кабеля в опасных зонах: 100 м (328 футов)

Зонд Deltapilot S DB 53 и поставляемый дополнительно растяжной зажим.

Монтажный блок DB 53 идентичен переходнику для корпуса.

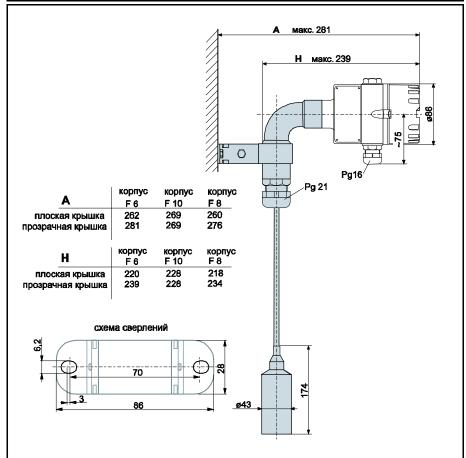
Размеры соответствуют схеме, приведенной на стр. 15.

Дополнительные Переходник для корпуса принадлежности


Служит для раздельного монтажа корпуса (F6/F10) и электронного блока.

- Материал: 1.4301 (AISI 304)
- Номер заказа на переходник для корпуса с кабелем длиной 5 м (16,4 фута): 942579-0051
- Номер заказа на переходник для корпуса с кабелем длиной 20 м (65,6 фута): 942579-1001
- Номер заказа на монтажную скобу: 919806-1000
- Номер заказа на монтажный набор для укорачивания троса: 935666-0020
- Кабель датчика
 - минимальный радиус изгиба: 200 мм (7,9 дюйма)
 - максимальная длина кабеля: 200 м (656 футов), в опасных зонах: 100 м (328 футов)

Монтаж с помощью переходника для корпуса позволяет выполнять безошибочные измерения даже в самых сложных условиях:


- очень высокая влажность,
- отсутствие доступа к месту установки.

Защита в месте установки реализована по классу ІР 68.

Монтаж на 2дюймовой трубе

Переходник для корпуса с монтажной скобой. используемые для раздельного монтажа корпуса и электронного блока.

Настенный монтаж

Переходник для корпуса с монтажной скобой, используемые для раздельного монтажа корпуса и электронного блока.

Защитный колпак

Для алюминиевых или пластмассовых корпусов (F 6/F 10) с двумя кабельными вводами имеются защитные колпаки, предохраняющие зонды от высоких температур при воздействии прямого солнечного света и препятствующие попаданию конденсата в корпус.

- Макс. температура окружающей среды: 70°C
- Материал: полиамид
- Номер заказа для прозрачной крышки: 942262-0001
- Номер заказа для плоской крышки 942262-0000

Сварная болванка для приварной шейки **TSP 14880**

Подробная информация и заказ – по запросу Endress+Hauser.

Заглушки для приварной шейки

Подробная информация и заказ – по запросу Endress+Hauser.

Модуль управления FHB 20

Съемный дисплей для электронных блоков FEB 20, FEB 22 и FEB 24.

• Материал: полиоксиметилен Номер заказа: 942512-0100

Прозрачная крышка

Материал: поликарбонат Номер заказа: 942828-0001

Материал: алюминий с покрытием Номер заказа: 942828-0010

Материал: нержавеющая сталь 1.4301 (AISI

304)

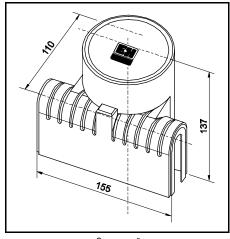
Номер заказа: 942828-0100

Специальные измерительные ячейки с родиевым покрытием

В случае сред с высоким содержанием водорода (например, для сапропели) атомы водорода могут проникать сквозь металлические поверхности датчика, что может привести к ошибкам измерений. Для таких приложений Endress+Hauser предлагает специальную металлическую ячейку. Примечание. Для предотвращения образования водорода не используйте оцинкованные фитинги.

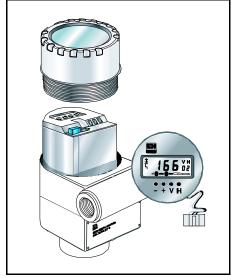
Приварной фланец

В качестве принадлежности к Deltapilot S DB 50 L может быть заказан:

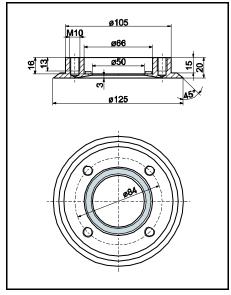

- Приварной фланец для монтажа заподлицо на резервуаре для соединительного штуцера с фланцем 65 мм (фланцем DRD).
 - Материал: 1.4301 (AISI 304)
 - Номер заказа: 916743-0000
- Уплотнительное кольцо: с плоским тефлоновым уплотнением
 - Номер заказа: 916783-0000

Размеры

1 дюйм = 25,4 мм


1 мм = 0,039 дюйма

Размеры приварного фланца для молокопроводов (DRD)


Зашитный колпак для корпуса

- F 6 (из алюминия) и
- F 10 (из пластмассы)

Deltapilot S c:

- дисплеем FHB 20
- и прозрачной крышкой

Подключение электрических контактов

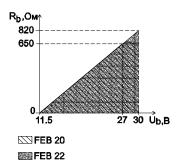


Диаграмма нагрузки FEB 20/22 при обмене данными; мин. сопротивление. Rb=250 Ом

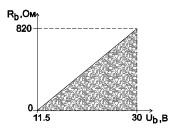


Диаграмма нагрузки FEB 20/22 в отсутствие обмена данными

1 Электронный блок FEB 11/FEB 11 P

Аналоговый сигнал (0,2...1,2 мА) из блоков FEB 11/FEB 11 Р передается по трехпроводной линии в блок обработки.

- Калибровка: в блоке обработки, находящемся в операторной или в шкафу управления
- Максимальное сопротивление кабеля: 25 Ом на жилу
- При использовании электронного блока FEB 11 Р со схемой защиты от перенапряжений корпус должен быть заземлен.

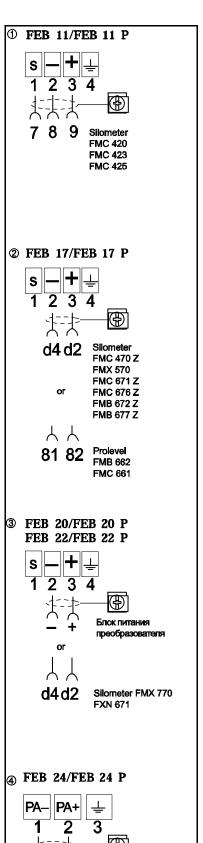
2 Электронный блок FEB 17/FEB 17 P

Помехозащищенный сигнал с частотноимпульсной модуляцией (частота импульсов примерно от 200 до 1200 Гц) из блоков FEB 17/FEB 17 Р передается в блок обработки.

- Калибровка: в блоке обработки
 При известной плотности и высоте уровня
 среды калибровка может производиться без
 заполнения резервуара.
- При использовании электронного блока FEB 17 Р со схемой защиты от перенапряжений корпус должен быть заземлен.

Примечание. Используется для функцией Silometer FMC 470 для регистрации длительности импульсов отключения.

3 Электронные Smart-блоки FEB 20/FEB 20 P; FEB 22/FEB 22 P


Цифровой сигнал связи и аналоговый сигнал 4...20 мА передаются одновременно, не влияя друг на друга.

- Напряжение источника питания: 11,5-30 В постоянного тока
- При использовании электронных блоков FEB 20 P и FEB 22 P со схемой защиты от перенапряжений корпус должен быть заземлен.

4 PROFIBUS-PA FEB 24/FEB 24 P

Цифровой сигнал связи передается по двухпроводному кабелю шины. По этому же кабелю подается питание.

- Напряжение источника питания: для неопасных зон: 9-32 В постоянного тока для зон EEx: 9-24 В постоянного тока (1,2 Ватта)
- Кабель шины: при исходном монтаже должен использоваться двухпроводной кабель типа «витая пара» со следующими характеристиками:
 - сопротивление шлейфа (пост. току)
 15...150 Ом/км
 - индуктивность на единицу длины 0,4...1 мГн/км
 - емкость на единицу длины 80...200 нФ/км
- При использовании электронного блока FEB 24 P со схемой защиты от перенапряжений корпус должен быть заземлен.

PA-PA+

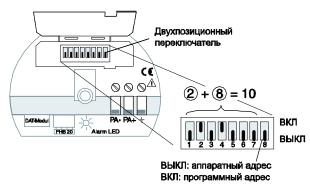
PROFIBUS-PA

Экранирование

- Используйте экранированный кабель промышленного производства.
- Использование неэкранированного кабеля для подключения FEB 20/FEB 22 и FEB 20/FEB 22 Р может повлиять на качество передачи цифрового сигнала связи.

Замена электронных блоков

Электронные блоки можно заменять. Проверьте (особенно в случае встроенной защиты от перенапряжений), что кабель заземления надежно подключен:


- к клемме внутреннего заземления корпуса
- к клемме 4.

Адрес шины

При использовании электронных блоков FEB 24/FEB 24 Р для подключения Deltapilot S к шине Profibus каждому прибору назначается уникальный адрес. Его можно задать аппаратно с помощью двухпозиционных переключателей или программно с помощью программы Commuwin II (когда переключатель 8 находится в положении ВКЛ).

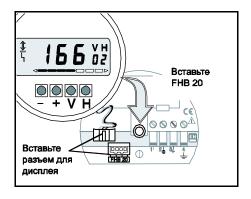
- При использовании датчика в безопасной зоне оптимальный экранирующий эффект достигается при подключении экрана с обоих концов.
- При использовании датчика во взрывоопасной зоне экран можно заземлять напрямую только с одного конца: со стороны датчика. (По поводу взрывозащиты руководствуйтесь постановлениями местных органов).

Кроме того, проверьте сопротивление между клеммой 4 и клеммой внешнего заземления. Оно должно обязательно быть меньше или равно 0,1 Ома.

Задание адреса шины:

- Поднимите защитную крышку
- Задайте адрес (1...126) с помощью переключателей 1–7
- Установите переключатель 8 в положение ВЫКЛ
- Отключите блок и включите его снова, чтобы новый адрес вступил в силу

Подключение модуля DAT


Все данные, относящиеся к измерительной ячейке, хранятся в ПЗУ модуля DAT. Модуль DAT поставляется уже установленным. Он постоянно подключен к корпусу Deltapilot S и не подлежит удалению.

- Если нужно заменить модуль DAT, освободите проволочную петлю и снимите ее с электронного блока.
- Вставьте новый модуль DAT в электронный блок и закрепите проволочную петлю.

Зафиксируйте модуль DAT на угловом зажиме

Подключение модуля управления

Для работы на объекте на электронные блоки FEB 20/20 P, FEB 22/22 P и FEB 24/24 P можно установить модуль управления FHB 20. Для этого разъем модуля FHB 20 нужно вставить в соответствующее гнездо (см. рисунок), а дисплей – в отверстие в центре электронного блока.

Спева:

Подключение модуля DAT (действительно для всех блоков FEB):

Все данные, относящиеся к измерительной ячейке, сохраняются в модуле DAT и затем передаются в электронный блок.

Справа:

Подключение дисплея FHB 20 к электронным блокам FEB 20, FEB 22 и FEB 24.

Технические данные

Общие данные

Область применения

Принцип работы и конструкция системы

Входные параметры

Выходные параметры	ы
--------------------	---

(1) Внимание! При использовании переходника для корпуса максимальная длина кабеля равна 200 м (656 футам), либо 100 м (328 футам) в опасных зонах. Она включает длину несущего кабеля и длину соединительного кабеля переходника для корпуса.

Точность измерений

Изготовитель	Endress+Hauser	Endress+Hauser				
Наименование прибора	Deltapilot S	Deltapilot S				
Deltapilot S		Прибор используется для непрерывных измерений уровня жидкостей, пастообразных и грязевых веществ				
Принцип измерений		Преобразование гидростатического давления столба жидкости в сигнал, пропорциональный уровню				
Модульность	Датчик давления DB 5X с	электронным блоком FEB XX				
Конструкция	– DB 50, DB 50 L: компакт– DB 51: исполнение с уд	- DB 50, DB 50 L: компактное исполнение - DB 51: исполнение с удлинительной трубой - DB 52, DB 53: исполнение с удлинительным тросом				
Передача сигнала	– FEB 11/11 Р: 3 провода– FEB 17/17 Р: 2 провода– FEB 20/20 Р (INTENSOF– FEB 22/22 Р (HART): 2 г	Зависит от типа электронного блока. – FEB 11/11 Р: 3 провода, аналоговый сигнал 0,21,2 мА – FEB 17/17 Р: 2 провода, ЧИМ сигнал 2001200 Гц – FEB 20/20 Р (INTENSOR): 2 провода, 420 мА (Smart) – FEB 22/22 Р (HART): 2 провода, 420 мА (Smart) – FEB 24/24 Р (PROFIBUS-PA): 2 провода, цифровой сигнал связи				
Измеряемый параметр	Уровень, определяемый	гидростатич. давлением столба жидкости				
Диапазоны измерений FEB 11/11 P, FEB 20/20 P, FEB 22/22 P, FEB 24/24 P	0100 мбар 0400 мбар 01200 мбар 04000 мбар -100100 мбар -400400 мбар -900 1200 мбар -9004000 мбар	(01,5 фунта/кв.дюйм) (06,0 фунта/кв.дюйм) (015,0 фунта/кв.дюйм) (060,0 фунта/кв.дюйм) (-1,5 1,5 фунта/кв.дюйм) (-6,0 6,0 фунта/кв.дюйм) (-13,015,0 фунта/кв. дюйм) (-13,060,0 фунта/кв. дюйм)				
Чувствительность FEB 17/17 P	10 Гц/мбар 2,5 Гц/мбар 0,833 Гц/мбар 0,25 Гц/мбар	666 Гц/фунт/кв,дюйм 166,5 Гц/фунт/кв,дюйм 55,5 Гц/фунт/кв,дюйм 16,65 Гц/фунт/кв,дюйм				

333 Гц/фунт/кв,дюйм

83,25 Гц/фунт/кв,дюйм 31,7 Гц/фунт/кв,дюйм 13,6 Гц/фунт/кв,дюйм

5 Гц/мбар

Диапазон калибровки шкалы

измерений (динамич. запас) Сдвиг начала отсчета

1,25 Гц/мбар

0,476 Гц/мбар 0,204 Гц/мбар

90% диапазона измерений

Тип электронного блока	FEB 20/22 FEB 20 P/22 P	FEB 17 FEB 17 P	FEB 11 FEB 11 P	
Выходной сигнал	420 мА	ЧИМ сигнал 2001200 Гц f0=200 ± 5 Гц диап. изм. 100 мбар: f0=200 ± 10 Гц диап. частот Δf: см. "Чувствительность"	0,21,2 MA	
Преобразователи	Silometer FMX 770 Silometer FXN 671	Silometer FMC 470 Z Silometer FMX 570 Silometer FMC 671 Z Silometer FMC 676 Z Silometer FMB 672 Z Silometer FMB 677 Z Prolevel FMB 662 Prolevel FMC 661	Silometer FMC 420 Silometer FMC 423 Silometer FMC 425	
Нагрузка без обмена данными: Нагрузка при обмене данными:	U_b =30B: Makc.818 OM FEB 20/20 P (INTENSOR): Makc. 680 OM FEB 22/22 P (HART): U_b =30B: Makc.800 OM	макс. 25 Ом/провод	макс. 25 Ом/провод	
Сигнал выхода за пределы диапазона	Опционально 3,6 мА, последнего значения	22 мА, либо фиксация	больше или равен 1.5 мА	
Время интегрирования	099 с, заводская установка: 0 с			
Встроенная защита от перенапряжений		овый разрядник на 230 В,	номинальный ток	

для FEB 17/17 P, регулируется на преобразователе

Тип электронного блока	FEB 24/24 P
Выходной сигнал	Цифровой сигнал связи, PROFIBUS-PA
Функция РА	Ведомое устройство
Скорость передачи	31,25 кбит/с
Время отклика	Ведомое устройство: примерно 20 мс
	ПЛК: 300600 мс (зависит от соединителя сегментов) для
	примерно 30 устройств
Сигнал тревоги	Выбор: –9999, +9999, либо фиксация последнего значения
Сопротивление на канале связи	Согласующий резистор PROFIBUS-PA
Физический уровень	IEC 1158-2
Время интегрирования	099 с, заводская установка: 0 с
Встроенная защита от	Защитные диоды: газовый разрядник на 230 В, номинальный ток
перенапряжений	перегрузки 10 кА

нормальные условия	25°C
Гистерезис	± 0,1% полной шкалы (DIN 16086)
Долгосрочная стабильность	0,1% номинального диапазона измерений за 6 месяцев
Влияние t окружающей среды	0,01% полной шкалы/10 K (DIN 16086)
Влияние t среды	0,1% полной шкалы/10 K (DIN 16086)
Линейность	0,2% в диапазоне измерений (DIN 16086), по заказу – 0,1%

Условия эксплуатации

Условия монтажа Для датчиков с интегрированным электронным блоком	DB 50, DB 50 L	DB 51	DB 52, DB 53
Положение установки	Любое, всегда ниже самой нижней точки измерений	1 27	

Окружающие условия

Температура окружающей среды	−20+60°C, с переходником для корпуса: −2080°C
Предельная t окружающей среды	-4085°C
Диапазон температур хранения	-4085°C
Климатический класс	D (IEC 654-1)
Класс защиты	Корпус: ІР 66, с переходником: ІР 68, электронный блок: ІР 20
Ударопрочность	IEC 68-2-31
Виброустойчивость	1055 Гц, 2 gn, (IEC 68-2-6)
Электромагнитная совместимость	Помехоизлучение по EN 50081-1 Помехоустойчивость по EN 50082-2 и пром. стандарту NAMUR (напряженность поля 10 B/м)

Производственные условия	DB 50	DB 51	DB 52, DB 53
Температура продукции	-10 +100°C	-10+80°C	-10+80°C
Температура очистки	Для DB 50 L: 135°C в	течение не более 30 м	инут
Предельные давления текучей	Изм. ячейка	Перегрузка	Макс.изм.разрежение
среды	бар (фунт/кв.дюйм)	бар (фунт/кв.дюйм)	бар (фунт/кв.дюйм)–
	0,1 (1,5)	8 (116)	0,1 (1,5)
	0,4 (6,0)	8 (116)	-0,4 (6,0)
	1,2 (15,0)	24 (348)	-0,9 (13,0)
	4,0 (60,0)	25 (362,5)	-0,9 (13,0)

Конструкция корпуса

Корпус F6	 – Материал: GD-Al Si 10 Mg, DIN 1725, с пластмассовым покрытием (синий/серый) – Уплотнение крышки корпуса: кольцевое из EPDM (эластомер) 						
Корпус F8	 – Материал: нержавеющая сталь 1.4301, без покрытия – Уплотнение крышки корпуса: профильное кольцевое из силиконового каучука VMQ 						
Корпус F10	 Материал: полиэфир, армированный стекловолокном (синий/серый) Уплотнение крышки корпуса: кольцевое из силиконового каучука 						

Соединительные штуцеры	DB 50	DB 51	DB 52
Резьбовые	G 1 ¹ / ₂ A (BSP)	G 1 ¹ / ₂ A (BSP)	G 1 ¹ / ₂ A (BSP)
	1 ¹ / ₂ NPT	1 ¹ / ₂ NPT	1 ¹ / ₂ NPT
Фланцевые	DN 40 PN 16 форма C	DN 40 PN 16 форма C	DN 40 PN 16 форма C
	DN 50 PN 16 форма C	DN 50 PN 16 форма C	DN 50 PN 16 форма C
	DN 80 PN 16 форма C	DN 80 PN 16 форма C	DN 80 PN 16 форма C
	DN 100 PN 16 форма C	DN 100 PN 16 форма C	DN 100 PN 16 форма C
	ANSI 1 ¹ / ₂ " 150 ф/кв.д	ANSI 1 ¹ / ₂ " 150 ф/кв.д	ANSI 1 ¹ / ₂ " 150 ф/кв.д
	ANSI 2" 150 ф/кв.д	ANSI 2" 150 ф/кв.д	ANSI 2" 150 ф/кв.д
	ANSI 3" 150 ф/кв.д	ANSI 3" 150 ф/кв.д	ANSI 3" 150 ф/кв.д
	ANSI 4" 150 ф/кв.д	ANSI 4" 150 ф/кв.д	ANSI 4" 150 ф/кв.д

Асептические соединительные штуцеры для DB 50 L

Соединительный штуцер	Резьбовой для молокопроводов DN 40 (DIN 11851)
1	Резьбовой для молокопроводов DN 50 (DIN 11851)
	Фланцевый диаметром 65 мм (DRD)
	Муфта Tri-clamp 2" (ISO 2852)
	Резьбовой SMS 2"
	Резьбовой Varivent D=68 мм
	Резьбовой IDF (ISO 2853)

Материалы смачиваемых деталей

Резьбовые и фланцевые для DB 50, 51, 52 и все пищевые для DB 50 L – из нерж. стали 1.4435 (AISI 316L) или сплава Хастеллой С4
 – Материал: сталь 1.4435 (AISI 316L) или 2.4610 Хастеллой С4 – Макс. длина трубы: 4 м (13,2 фута)
 – Многожильный со стальной оплеткой, изоляция из FEP (макс. 80°С) или полиэтилена (макс. 70°С) – Макс. длина кабеля ⁽¹⁾: 200 м (656 ф.), в Ех-зонах: 100 м (328 ф.) – Мин. радиус изгиба: 200 мм (7,9 дюйма)
Нержавеющая сталь 1.4435 или сплав Хастеллой 2.4610 С4
 Для изм. ячеек DB 50, DB 51, DB 52, DB 53: опционально вайтон, EPDM, Kalrez или приварное (без эластомера) Для изм. ячейки DB 50 L: приварное или профильное из силиконового каучука для унив. переходника (прилагается), пригодно для пищевых продуктов согласно BGA XV и FDA 177.2600, с приварным фланцем и тефлоновым уплотнением (прилагается)
Хастеллой C4, Ra < 0,2 мкм
Для DB 51, DB 52, DB 53: пластмасса PFA (перфтороксид)
 Переходник для корпуса Растяжной зажим: оцинкованная сталь с пластмассовыми губками
Заливка: силиконовое масло ТК002/500 с USDA/H1, сертификат соответствия директивам FDA

См. "Подключение электрических контактов" на стр. 17-18

См. "Габаритные размеры" на стр. 10-15

Конструкция

(1) Внимание!

(1) внимание:
При использовании переходника для корпуса максимальная длина кабеля равна 200 м (656 футам), либо 100 м (328 футам) в опасных зонах. Она включает длину несущего кабеля и длину соединительного кабеля переходника для корпуса.

Электрические соединения

Габариты

Пользовательский интерфейс

Источники питания

Модуль управления FHB 20 с электронными блоками FEB 20/20 P, FEB 22/22 P

Дисплей	 4-разрядный ЖКИ с выводом сегментных гистограмм, индикатором ошибок и индикатором сигнала связи по заказу, для индикации и управления на объекте, съемный блок
Управление	4 клавиши –, +, V, H на модуле индикации и управления FHB 20
Работа без модуля управления	Калибровка и базовые функции: с помощью 4 клавиш 0%: –, + и 100 %: –, + на электронном блоке

Модуль управления FHB 20 с электронными блоками FEB 24/24 P

	·
Дисплей	 4-разрядный ЖКИ с выводом сегментных гистограмм, индикатором ошибок и индикатором сигнала связи по заказу, для индикации и управления на объекте, съемный блок
Управление	4 клавиши –, +, V, H на модуле индикации и управления FHB 20
Работа на расстоянии	Управление по шине PROFIBUS-PA с помощью программы Commuwin II или профиля PA

Интерфейсы для обмена данными

FEB 20/20 P FEB 22/22 P	Работа с помощью портативного пульта: – Коммуникатор HART DXR 275 для протокола HART – Commulog VU 260 Z для протокола INTENSOR – Прямое подключение к токовому выходу или в любой точке линии передачи сигнала. Сопротивление на канале связи: 250 Ом							
FEB 24/24 P	PROFIBUS-PA Сопротивление на канале связи: согласующий резистор							
	PROFIBUS-PA (1 на сегмент)							

FEB 20/20 P FEB FEB 17 FEB 17 P FEB 11 FEB 11 P Электронный блок 22/22 P Источник питания 11,5–30 В пост. тока 14–16 В пост. тока 15-20 В пост. тока Макс. пульсация для устройств INTENSOR (измеренная для 500 Пульсация (для устройств Smart) Ом) в диапазоне 0...100 Гц: UPP < 30 мВ Макс. пульсация для устройств HART (измеренная для 500 Ом) в диапазоне 47 Hz...125 Hz: UPP < 200 мВ Пульсация (не устройства Smart, Макс. шумы (измеренные для 500 Ом.) в диапазоне 500 Гц...10 в пределах допустимого кГц: Ueff=2,2 мВ диапазона напряжений) Макс. уровень помех в диапазоне 1 Гц...100 кГц: U_{PP} < 1 В Пусковой ток 100 мА для рабочего напряжения 30 В, длительность полупериода импульса 20 мс

Электронный блок	FEB 24	FEB 24 P				
Источник питания	В опасных зонах: 9-24 В пост. тока (1,2 Вт) В безопасных зонах: 9-32 В пост. тока	В опасных зонах: 9,6-24 В пост. тока (1,2 Вт) В безопасных зонах: 9,6-32 В пост. тока				
Потребление тока	10 mA +/- 1 mA	10 MA +/- 1 MA				
Взрывозащита	См. "Состав заказа на пр	одукцию", стр. 22-23				
Защита от переливов	См. "Состав заказа на пр	См. "Состав заказа на продукцию", стр. 22-23				
Маркировка СЕ	Deltapilot S удовлетворяе	Нанося маркировку CE, Endress+ Hauser удостоверяет, что датчик Deltapilot S удовлетворяет всем обязательным требованиям соответствующих Директив EC.				

Заказ

Дополнительная документация

Сертификаты и аттестаты

См. "Состав заказа на продукцию", стр. 22-23

- Deltapilot S. Информация о системе: SI 006F/00/e
- Инструкции по эксплуатации электронных блоков FEB 20 с поддержкой протокола INTENSOR и FEB 22 с поддержкой протокола HART: BA 152F/00/en
- Инструкции по эксплуатации электронных блоков FEB 11/FEB 17: KA 048F/00/a6
- Инструкции по эксплуатации переходников для корпусов и инструментов для укорачивания кабелей: KA 049F/00/a6
- Инструкции по ТБ СЕ Ex II 1/2 G, EEx ia IIC T6: XA 002F-B/00/z1
 Инструкции по ТБ СЕ Ex II 1/2 G bzw. 2 G, EEx ia IIC T4/T5/T6: XA 007F-B/00/z1
- Процедуры тестирования электромагнитной совместимости. Технические данные: TI 241F/00/en Замечания по разработке PROFIBUS-PA. Технические данные: TI 260F/00/en

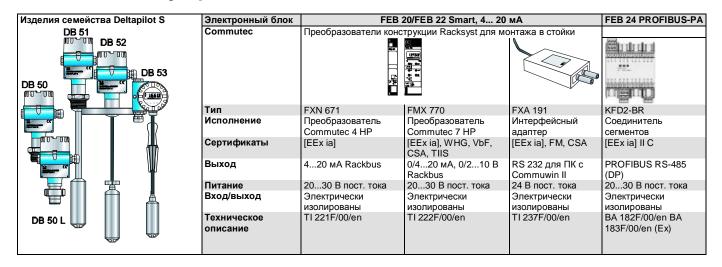
Состав заказа на изделие

10 Сертификаты и аттестаты

DB 50 L-

Deltapilot DB 50 L (S), компактное исполнение для пищевой промышленности

Стандартное исполнение EEx ia IIC T6, защита от переливов: WHG / ATEX II 1/2 G (не для DB 50 S) Защита от переливов: WHG (не для DB 50 S) EEx ia IIC T6 / ATEX II 1/2 G (не для DB 50 S) FM, класс I, разделы 1,2, группы A-D (не для DB 50 L) CSA, класс I, раздел 1, группы A-D CSA, класс I, раздел 2, группы A-D Другие 20 Варианты исполнения Компактное Специальное исполнение Резьбовой соединительный штуцер: исполнение / материалы Универсальный монтажный переходник Соединение для молокопроводов, DN 40 (DIN 11851) / 1.4435 (AISI 316L) Соединение для молокопроводов, DN 50 (DIN 11851) / 1.4435 (AISI 316L) 41 Фланец диаметром 65мм (DRD) / 1.4435 (AISI 316L) Муфта Tri-clamp® 2" (AISI 316L) Соединение SMS 2" / 1.4435 (AISI 316L) Соединение Varivent, DN 50 / 1.4435 (AISI 316L) Соединение IDF 2" (ISO 2853) / 1.4435 (AISI 316L) 44 50 53 54 56 Универсальный монтажный переходник, удлинитель 6" Специальное исполнение 40 Диапазоны измерений DΑ Диапазон измерений -100...100 мбар (-1.5...1.5 фунт./кв.дюйм) диапазоны измерений О...100 мбар (0...1,5 фунтов/кв.дюйм) Диапазон измерений 0...400 мбар (0...6 фунт./кв.дюйм) Диапазон измерений 0...4200 мбар (0...15 фунт./кв.дюйм) Диапазон измерений 0...4000 мбар (0...60 фунт./кв.дюйм) Диапазон измерений –400...400 мбар (–6...6 фунт./кв.дюйм) Диапазон измерений –900...1200 мбар (–13...15 фунт./кв.дюйм) DB DC Диапазон измерений –900...4000 мбар (–13...60 фунт./кв.дюйм) DD BD Другой 50 Исполнение измерительной ячейки Измерительная ячейка с линейностью менее 0,2%, силиконовая заливка 3 Измерительная ячейка с линейностью менее 0,1%, силиконовая заливка Специальное исполнение 60 Уплотнение измерительной ячейки 3 Сварное . Вайтон 9 Специальное исполнение Преобразователь 70 Без встроенного преобразователя FEB 11P: аналоговый сигнал. 3-проводная схема. В FEB 11: аналоговый сигнал, 3-проводная схема встроенная защита от перенапряжений FEB 17: ЧИМ сигнал, 2-проводная схема FEB 17P: ЧИМ сигнал, 2-проводная схема, встроенная FEB 20: 4...20 мА, компактный, INTENSOR защита от перенапряжений FEB 22: 4...20 мА, компактный, HART FEB 20P: как D + встр. защита от перенапряжений FEB 22 P: как E + встр. защита от перенапряжений FEB 22 P: как F + встр. защита от перенапряжений F G FEB 20: 4...20 мА, компактный, INTENSOR, с дисплеем FEB 22: 4...20 мА, компактный, HART, с дисплеем FEB 24: PROFIBUS-PA FEB 22P: как G + встр. защита от перенапряжений Н Κ FEB 24: PROFIBUS-PA, с дисплеем FEB 24 Р: как H + встр. защита от перенапряжений Специальное исполнение FEB 24 Р: как K + встр. защита от перенапряжений Корпус / Кабельный ввод / Класс защиты доступа 80 A0 Без корпуса Из полиэфира / Pg 16 / IP 66 D1 Алюминиевый с покрытием / Pg 16 / IP 66 Из нержавеющей стали 1.4301 (AISI 304) F 8 / PG 13.5 / IP 66 D₂ D3 Из полиэфира / 1/2 NPT / Nema 4X E1 Алюминиевый с покрытием / 1/2 NPT / Nema 4X E2 Из нержавеющей стали 1.4301 (AISI 304) F 8 / 1/2 NPT / Nema 4X E3 F1 Из полиэфира / G 1/2 / IP 66 F2 Алюминиевый с покрытием / G 1/2 / IP 66 F3 Из нержавеющей стали 1.4301 (AISI 304) F 8 / G 1/2 / IP 66 Из полиэфира / M 20x1.5 / IP 66 G1 G2 Алюминиевый с покрытием / M 20x1.5 / IP 66 Из нержавеющей стали 1.4301 (AISI 304) F 8 / M 20x1.5 / IP 66 G3 Алюминиевый с покрытием F 6 / M12 / IP 66 PROFIBUS-PA РЗ Из нержавеющей стали 1.4301 (AISI 304) F 8 / M 12 / IP 66 PROFIBUS-PA Y9 Специальное исполнение Дополнительные принадлежности 0 Отсутствуют Переходник для корпуса, с соединительным кабелем длиной 5000 мм (200 дюймов), IP 68 Переходник для корпуса, с соединительным кабелем (макс. длина 20000 мм, 800 дюймов), IP 68 Другие Наименование изделия Длина соединительного кабеля переходника для корпуса


Deltapilot DB 50 (A) в компактном исполнении, DB 51 (A) в стержневом исполнении, DB 52 (A) в тросовом исполнении, DB 53 (A) в исполнении с растяжным зажимом

		• • • • • • • • • • • • • • • • • • • •				,,,,,,,,,						
		Сертис										
		Станда ЕЕх іа І	•					щит	а от переливов: VbF, WHG / ATE	X II 1/2 G	(не для	я DB 5_ A)
									II 1/2 G (not for DB 5_ A)	D.E. A.)		<i>- '</i>
									рв: WHG / ATEX II 1/2 G (не для D цля DB 5_ A)	B 5_ A)		
									тя DB 5_ A)			
		EEx ia l							\ D (uo nng DP 60 L)			
		CSA, KI							A-D (не для DB 50 L) Э			
	Т	CSA, кл										
	Y	Другие										
						лнен Элнеі			(а / материалы 50)		K	С тросом (DB 52, DB 53) / FEP / указать нужную длину
							,		SI 316L)/ указать нужную длину			С тросом (DB 52, DB 53) / PE / указать нужную длину
									стеллой С4)/ указать нужную дли	ну		
						полн			ьный штуцер: исполнение / мат	ODM3 ELI		
									: A / 1.4435 (AISI 316L) (не для DE		31	ANSI 2" 150 фунт./кв.д. / 1.4435 (AISI 316L) (не для DB 5
									А / 2.4610 (Хастеллой С4) (не дл.	я DB 53)		ANSI 3" 150 фунт./кв.д. / 1.4435 (AISI 316L) (не для DB 5
									(AISI 316L) (не для DB 53) е по желанию заказчика			ANSI 4" 150 фунт./кв.д. / 1.4435 (AISI 316L) (не для DB 5 Тросовый зонд без растяжного зажима (DB 50)
									тьный штуцер: исполнение / ма	териалы		Оцинкованный растяжной зажим (DB 50)
									ма С / 1.4435 (AISI 316L) (не для	DB 53)		
									I.4435 (AISI 316L) (не для DB 53) I.4435 (AISI 316L) (не для DB 53)			
		23	DN	100	PN 1	16, ф	орма	a C /	1.4435 (AISI 316L) (не для DB 53			
		30							дюйм / 1.4435 (AISI 316L) (DB 50) е по желанию заказчика			
		33	40			ж 30НЬ						
			ВА	0	.100	мбар	o (0	.1,5	фунтов/кв.дюйм)		Б.	400 400 v5-z / 45 45 to z = (vv-×v-) (v DD 50)
							•		унт./кв.дюйм)			-100100 мбар (-1,51,5 фунт./кв.дюйм) (не для DB 53) -400400 мбар (-66 фунт./кв.дюйм) (не для DB 53)
									фунт./кв.дюйм) фунт./кв.дюйм)		DC	-9001200 мбар (-1315 фунт./кв.дюйм) (не для DB 53
					угой				,		DD	-9004000 мбар (-1360 фунт./кв.дюйм) (не для DB 53
				50 1					мерительной ячейки	•	3	С линейностью менее 0,1%, силиконовая заливка
				2					менее 0,2%, силиконовая заливк менее 0,2%, заливка из фомблин		4	С линейностью менее 0,1%, заливка из фомблина
				9	_				сполнение			
				1	60			ение	е измерительной ячейки			
					1 2		йтон ЭПТ					
					3		арно	Э				
					5 9	Kal			OO MODO BUOUMO			
					y I	70		_	ое исполнение Вазователь			
						A			роенного преобразователя		M	FEB 11P: аналоговый сигнал, 3-проводная схема,
						В			аналоговый сигнал, 3-проводная			встроенная защита от перенапряжений
						C D			ЧИМ сигнал, 2-проводная схема 420 мА, компактный, INTENSO		N	FEB 17P: ЧИМ сигнал, 2-проводная схема, встроенная защита от перенапряжений
						Ē			420 мА, компактный, HART		Р	FEB 20P: как D + встр. защита от перенапряжений
						F			420 мА, компактный, INTENSOR, с			FEB 22 Р: как E + встр. защита от перенапряжений
						G H			420 мА, компактный, HART, с д PROFIBUS-PA	цисплеем	S T	FEB 22 P: как F + встр. защита от перенапряжений FEB 22P: как G + встр. защита от перенапряжений
						K			PROFIBUS-PA, с дисплеем		Ü	FEB 24 Р: как H + встр. защита от перенапряжений
						Υ			льное исполнение		W	FEB 24 Р: как K + встр. защита от перенапряжений
							80		орпус / Кабельный ввод ез корпуса			
									з полиэфира / Pg 16 / IP 66			
									пюминиевый с покрытием / Pg 16		. / DO 4	10 F / ID 00
							E1		з нержавеющей стали 1.4301 (AIS з полиэфира / 1/2 NPT / Nema 4X	or 304) F 8	3 / PG 1	13.5 / IP 66
							E2	Ал	тюминиевый с покрытием / 1/2 NF			
							E3 F1		з нержавеющей стали 1.4301 (AIS з полиэфира / G 1/2 / IP 66	SI 304) F 8	3 / 1/2 N	NPT / Nema 4X
									люминиевый с покрытием / G 1/2	/ IP 66		
							F3	Из	з нержавеющей стали 1.4301 (AIS		3 / G 1/2	2 / IP 66
									з полиэфира / M 20x1.5 / IP 66 люминиевый с покрытием / M 20x	1.5 / IP 66	3	
							G3	Из	з нержавеющей стали 1.4301 (AIS	304) F 8	3 / M 20	
									пюминиевый с покрытием F 6 / М			
									з нержавеющей стали 1.4301 (AIS тециальное исполнение	oi 304) F 8) / IVI 12	2 / IF 00 FKUFIDU3-PA
								90	Дополнительные принадлеж	ности		
								0	Отсутствуют			C
								1 3				ю́елем длиной 5000 мм (200 дюймов), IP 68 обелем (макс. длина 20000 мм, 800 дюймов), IP 68
	1		J	1]		9	Другие			
	▼	▼ ▼	*	▼ '	▼	▼	_▼	<u> </u>	1	\vdash		а троса для DB 52, DB 53
_			1						Наименование изделия		Длина	а соединительного кабеля переходника для корпуса

Внимание! При использовании переходника для корпуса максимальная длина кабеля равна 200 м (656 футам), либо 100 м (328 футам) в опасных зонах. Она включает длину несущего кабеля и длину соединительного кабеля переходника для корпуса.

DB

Подключаемые устройства

Электронный	FEB 11	А, аналоговый	й сигнап	FEB 17, ЧИМ сигнал					
блок		3-проводной лі		TEST, INTOMINATION					
Silometer	Minipac	Minipac	96x96 MM	Racksyst	Racksyst	Racksyst	Преобразователь на объекте		
Тип	FMC 420	FMC 423	FMC 425	FMX 570	FMC 671 Z FMC 676 Z без дисплея и блока управления	FMB 672 Z FMB 677 Z без дисплея и блока управления	Prolevel FMC 661 Prolevel FMB 662		
Особенности				Линеаризация резервуара, коррекция калибровки с Deltapilot и Liquiphant	Линеаризация резервуара, коррекция калибровки с Deltapilot и Liquiphant	Два независимых канала, измерения плотности и перепада давления	Два независимых канала, линеаризация резервуара, коррекция калибровки		
Исполнение	Корпус Minipac	Корпус Міпірас	Монтаж на щите	Карта Racksyst 7 HP	Преобразователь Commutec 7 HP	Преобразователь Commutec 7 HP	Полевой корпус 292x253x176 мм		
Сертификаты				Ex, [EEx ia], WHG, VbF	Ex, [EEx ia], WHG, VbF	Ex, [EEx ia], WHG, VbF	[EEx ia], FM, CSA		
Выход	0/420 мА 010 В	0/420 мА 010 В	0/420 мА 010 В	0/420 мА 0/210 В, с регулировкой гашения колебаний на выходе	0/420 мА 0/210 В, с регулировкой гашения колебаний на выходе	0/420 мА (2x) 0/210 В (2x), с регулировкой гашения колебаний на выходе	0/420 MA (2x)		
Соединение	20253 В (пер.)	20253 В (пер.), 1632 В (пост.)	20253 В (пер.)	2030 В (пост.)	2030 В (пост.)	2030 В (пост.)	1660 В (пост.) 85253 В (пост.)		
Индикация сбоев				Перекидной контакт	Перекидной контакт	Перекидной контакт	Перекидной контакт		
Техническое описание	TI077F/00/ en	TI 077F/00/en	TI143F/00/e n	TI 201F/00/en	TI 064F/00/en	TI 065F/00/en	TI 232F/00/en TI 234F/00/en		

ООО Эндресс+Хаузер 107076, Москва ул. Электрозаводская, д.3 стр. 2 Россия

Тел. +7 (495) 783 2850 Факс +7 (495) 783 2855

http://www.ru.endress.com info@ru.endress.com

08.99/MTM

TI 257F/00/ru/01.00 016842-1000 RÜ/CV4.2

